RON receptor tyrosine kinase, a negative regulator of inflammation, is decreased during simian immunodeficiency virus-associated central nervous system disease.
نویسندگان
چکیده
Expressed on tissue-resident macrophages, the receptor tyrosine kinase, recepteur d'orgine nantais (RON), functions to maintain inflammation homeostasis by activating genes that promote wound repair and resolve inflammation while repressing genes that perpetuate tissue damage and cell death. Chronic HIV-1 infection is associated with dysregulated inflammation, and we hypothesize that diminished RON expression contributes to the development of end organ diseases such as HIV-1-associated CNS disease. To explore RON function in vivo, we used CNS tissue from a well-characterized SIV macaque model and examined the temporal regulation of RON in the brain during the course of infection. Following prolonged SIV infection, RON expression was inversely correlated with the development of CNS disease; RON was maintained in animals that did not develop CNS lesions and was reduced in SIV-infected macaques that demonstrated moderate to severe inflammatory lesions. Arginase-1 expression was reduced in the brain during late infection, whereas expression of the inflammatory genes, IL-12p40 and TNF-α, was elevated. To validate a role for RON in regulating HIV-1 in primary cells, we used human tissue-resident macrophages isolated from tonsil as a tractable cell model. RON signaling in tissue-resident macrophages, both ligand dependent and independent, limited HIV-1 replication. Furthermore, prolonged HIV-1 infection in vitro resulted in downregulation of RON. We propose a model in which, following chronic HIV-1 infection in the brain, RON expression is decreased, genes that quell inflammation are repressed, and inflammatory mediators are induced to promote tissue inflammation.
منابع مشابه
RON Receptor Tyrosine Kinase, a Negative Regulator of Inflammation, is Decreased During Simian Immunodeficiency Virus Associated Central Nervous System Disease1
Expressed on tissue resident macrophages, the receptor tyrosine kinase, RON, functions to maintain inflammation homeostasis by activating genes that promote wound repair and resolve inflammation while repressing genes that perpetuate tissue damage and cell death. Chronic human immunodeficiency virus-1 (HIV-1) infection is associated with dysregulated inflammation and we hypothesize that diminis...
متن کاملPatients with AIDS and Is Decreased in Brain Tissue from Transcription in Monocytes/Macrophages Regulator of Inflammation, Inhibits HIV-1 RON Receptor Tyrosine Kinase, a Negative
متن کامل
Neuroprotective Role of the Ron Receptor Tyrosine Kinase Underlying Central Nervous System Inflammation in Health and Disease
Neurodegeneration is a critical problem in aging populations and is characterized by severe central nervous system (CNS) inflammation. Macrophages closely regulate inflammation in the CNS and periphery by taking on different activation states. The source of inflammation in many neurodegenerative diseases has been preliminarily linked to a decrease in the CNS M2 macrophage population and a subse...
متن کاملP171: Microglia Cell, Major Player in the Central Nervous System Inflammation
Inflammation, a self-defensive reaction against various pathogenic stimuli, may become harmful self-damaging process. Increasing evidence has linked chronic inflammation to a number of neurodegenerative disorders including alzheimer's disease (AD), parkinson's disease (PD), and multiple sclerosis (MS). In the central nervous system, microglia, the resident innate immune cells play major role in...
متن کاملImatinib Ameliorates Neuroinflammation in a Rat Model of Multiple Sclerosis by Enhancing Blood-Brain Barrier Integrity and by Modulating the Peripheral Immune Response
Central nervous system (CNS) disorders such as ischemic stroke, multiple sclerosis (MS) or Alzheimers disease are characterized by the loss of blood-brain barrier (BBB) integrity. Here we demonstrate that the small tyrosine kinase inhibitor imatinib enhances BBB integrity in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS). Treatment was accompanied by decre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 191 8 شماره
صفحات -
تاریخ انتشار 2013